

Statewide evaluation of "no overdraft policy" with a hydroeconomic model, CALVIN

Mustafa S. Dogan, Ian Buck, Jay Lund

Center for Watershed Sciences, UC Davis

msdogan@ucdavis.edu

No overdraft policy

- Sustainable Groundwater Management Act (SGMA) 2014
- Local agencies managing groundwater
- SGMA aims to sustainable manage groundwater, including eliminating overdraft
- This study focuses only on eliminating overdraft

<u>CALVIN</u>

- Hydroeconomic optimization model for water planning and allocation
- ~90 % of urban and agricultural activities
- Environmental requirements
- Groundwater and surface water used conjunctively
- Minimize statewide operating and scarcity costs

Demand representation

UNIVERSITY OF CALIFORNIA

Limitations of CALVIN

- Not a hydrologic model to represent all properties of groundwater (fixed recharges from C2VSim)
- Fixed groundwater heads for pumping
- Knows all hydrologic events in its period, providing optimistic values for scarcity and cost
- Perfect water market conditions, where users can buy and sell water (subject to constraints)

Delta water balance

- Restrictions on Delta outflow and exports in addition to no overdraft policy
- Exports: California Aqueduct and Delta-Mendota Canal
- Outflow: drainage into SF Bay (required + surplus)

Management cases

• Under historical and warm-dry climates

#	Scenario	Description	Importance
Scenario 1	Base historical	Historical overdraft (1921-2003)	Base case operations
Scenario 2	No overdraft	Ending groundwater storage cannot be less than initial storage	Operations without overdraft and any restrictions on Delta
Scenario 3	No overdraft & no reduction in Delta outflow	No reduction in Delta outflow is allowed	Water use re-allocation across basins
Scenario 4	No overdraft & no additional Delta exports	No additional Delta exports are allowed	Operations and use changes within basins
Scenario 5	No overdraft & no Delta exports	Delta exports are limited to 5% of export capacity	Effects of only minimal Delta exports

Warm-dry conditions

- Derived from GFDL CM2.1 A2 climate scenario
- Snowmelt recession
- Peaking in January

Component	Historical (km³/year)	Warm-dry (km³/year)	Change (%)
Rim inflow	38.1	27.5	-28%
Gw recharge	7.5	7.1	-6%
Local runoff	2.1	0.7	-68%
Total	47.7	35.2	-26%

<u>Results</u>

- Effects of no overdraft policy and warm-dry hydrology on water deliveries
- Groundwater storage effects
- Value of additional Delta exports and reduced outflow
- Surface storage expansion

Water deliveries

- Groundwater and surface water deliveries
- No big change in portfolio under no overdraft

ERSITY OF CALIFORNIA

Water deliveries

- Groundwater and surface water deliveries
- No big change in portfolio under no overdraft
- Warm-dry hydrology reduce surface deliveries

Groundwater storage

- Modeled storage (between 1921 - 2003)
- Drawdown-refill cycles
- No long-term overdraft
- Short term overdraft useful
- Large recovery periods (64 & 14 years)

Groundwater storage

- Modeled storage (between 1921 - 2003)
- Drawdown-refill cycles
- No long-term overdraft
- Short term overdraft useful
- Large recovery periods (64 & 14 years)
- Warm-dry

Delta exports

- Exports from
 DMC & CAA
- Deliveryreliabilities
- Increase with no overdraft

Delta exports

- Exports from
 DMC & CAA
- Deliveryreliabilities
- Increase with no overdraft
- Large reduction in deliveries with warm-dry hydrology

Delta outflow

- Required + surplus outflow
- Drainage from Central Valley into SF Bay
 Small reductions
- in Jan-Feb-Mar

Delta outflow

- Required + surplus outflow
- Drainage from Central Valley into SF Bay
 Small reductions
- in Jan-Feb-Mar
- Large reductions with warm-dry hydrology

Surface storage expansion

 Solution for temporal disconnection between supply and demand

Historical hydrology Scenario NOD SOD With Overdraft 7 7 8 No overdraft (OD) 7 No OD + no Delta 6 6 outflow reduction No OD + no additional 8 6 Delta export No OD + no Delta 5 1 export

Average marginal value of expanding

storage capacity (\$ / 1000 m³ / year)

NOD: North of Delta SOD: South of Delta

 $1000 \text{ m}^3 = 0.81 \text{ Acre-foot}$

Surface storage expansion

- Solution for temporal disconnection between supply and demand
- Value of expanding capacity increases with warm-dry hydrology NOD
- Cost of expansion
 ~\$300-\$800 per 1000 m³ per year

Average marginal value of expanding storage capacity (\$ / 1000 m³ / year)

Scenario	Historical hydrology		Warm-dry hydrology	
	NOD	SOD	NOD	SOD
With Overdraft	7	7	141	1
No overdraft (OD)	8	7	149	1
No OD + no Delta outflow reduction	6	6	41	1
No OD + no additional Delta export	8	6	159	1
No OD + no Delta export	5	1	78	1

NOD: North of Delta SOD: South of Delta

 $1000 \text{ m}^3 = 0.81 \text{ Acre-foot}$

Conclusions

- No overdraft policy and warm-dry hydrology change operations
- Large filling and drawdown periods require long-term planning for managing groundwater
- Demand for Delta's water increases
- Warm-dry hydrology has more impacts than no overdraft policy
- Surface storage expansion benefits are probably lower than its costs

Questions?

Mustafa S. Dogan Center for Watershed Sciences, UC Davis msdogan@ucdavis.edu

