

Ending Overdraft in California under Climate Change

Mustafa S. Dogan^{1,*}, Ian Buck² and Jay Lund¹

¹University of California, Davis; ²Stantec, Sacramento, CA

*Presenter: msdogan@ucdavis.edu

Study area: Central Valley

- Productive agricultural land.
- Sacramento and San Joaquin R. drain Central Valley's water to the San Francisco Bay, creating the Delta.
- More pressure from population growth, economic development, and increased irrigation demand
- Sustainable
 Groundwater
 Management Act
 (SGMA) aims to
 better manage
 groundwater and
 end overdraft

Management scenarios & basic Delta water balance

Delta exports from California aqueduct & Delta-Mendota canal

- Delta exports increase when overdraft is terminated
- Climate change reduces reliability of exports
- Delta outflow and water trades from north of Delta are

2 Groundwater overdraft in the Central Valley

Overdraft:

- Groundwater extraction through pumping exceeds aquifer recharge over a long period
- Unsustainable use of groundwater

Overdraft in the valley:

 Tulare Basin has long been suffering from overdraft

Climate change (warm&dry):

 less surface water, more groundwater pumping

Figure 2. Cumulative change in groundwater storage of the valley, 1962-2003 (Faunt et al., 2009)

5 Annual average water scarcity & scarcity cost

- Agricultural and urban water scarcities and costs increase with climate change and no overdraft policy
- Ending
 overdraft with
 adaptations is
 more desirable

Table 1. Annual average agricultural and urban water scarcity costs

B Delta outflow: drainage from Central Valley into S. F. Bay

- No overdraft policy diverts more water from Delta outflow
- Climate change considerably reduces the outflow and shifts the peak

Figure 8. Monthly average and required Delta outflow

Method: Hydroeconomic evaluation of ending overdraft

Economic response to ending groundwater overdraft with adaptation is evaluated with CALVIN, a hydroeconomic optimization model for California's water supply system

CALVIN:

- California's entire intertied water infrastructure
- Integrated model: surface and groundwater
- Economic representation of agricultural and urban demands
- Optimize water allocation to users
- Provides insights into water policy, planning and management

Groundwater storage without overdraft

- Short-term overdraft is useful for reducing cost and conjunctive use
- No overdraft policy under climate change reduces groundwater pumping

Conclusions

- Adaptations make ending overdraft less costly
- Agricultural users are most affected from ending overdraft
- Diversions from surplus Delta outflow are important especially under climate change

Useful adaptations:

- Diversions from Delta outflow
 - Additional Delta exports
- Conjunctive use
- Water trades
- Water conservation

References & more results:

- Faunt, C.C., ed., 2009, Groundwater Availability of the Central Valley Aquifer, California: U.S. Geological Survey Professional Paper 1766, 225 p.
- Dogan, M. S. (2015). Integrated water operations in California: Hydropower, overdraft, and climate change. MS Thesis, University of California, Davis
- Buck, I. (2016). Managing to End Groundwater Overdraft in California's Central Valley with Climate Change. MS Thesis, University of California Davis

